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1. Introduction 
 
Due to the driving forces of the Internet and network communication technology, the paradigm of 
Geographic Information Systems (GIS) is shifting [16, 19]. Moreover, with the advances in 
computer technology and GIS science, distributed GIS become practical and widely acceptable. 
Traditional GIS plays an extremely valuable role in GIS applications by providing a wide variety 
of tools to handle geo-referenced data. However traditional GIS cannot be applied directly in 
distributed and heterogeneous computing environments due to their closed and centralized 
architectures.   
 
To hide the heterogeneity and to accommodate distributed environments, open, component-based 
GIS are replacing the old traditional monolithic GIS [2, 6, 9]. Under the open, component-based 
architecture, distributed data and functionality can be integrated and cooperate with each other 
and at the same time it minimize the risk of developing new monoliths. Furthermore, by applying 
component-based software development (CSBD) approaches, components can be reused and 
composed in many applications. Component technologies, such as the Common Object Request 
Broker Architecture (CORBA), Distributed Component Object Model (DCOM), and Java 
Remote Method Invocation (RMI), are playing major roles in the construction of open, 
component-based architectures. 
  
While many component-based GISs have been developed from scratch, there is a need to develop 
a component-based GIS based on existing code rather than development from scratch. For 
instance, constructing systems from GIS commercial off-the-shelf (COTS) products have been 
conducted [20]. The advantages of using previously-existing systems are numerous including 
tested reliability, approved features, and an opportunity for expanding system capabilities [20]. 
So, building a component-based GIS from an existing traditional GIS is a research problem that 
we are trying to address. 
 
This paper introduces an approach to transform a traditional GIS, GRASS, into a component-
based GIS under CORBA environment. Section 2 first introduces component-based software 
development and CORBA. In Section 3 we describe the layered architecture and related methods 
and technologies used to transform GRASS into a component-based GIS. A case study that 
integrates the GIS components is presented and evaluated in Section 4.  Section 5 presents the 
conclusions and our contributions. 
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2. Background 
 
This section presents related background knowledge. Section 2.1 introduces component-based 
software development. CORBA is briefly introduced in Section 2.2. 
 
2.1 Component-based Software Development 
 
A software component is a self-contained unit which can be independently deployed and is 
subject to composition by third parties [18]. Software components adopt features of object-
oriented programming including encapsulation, polymorphism, inheritance, object-binding, and 
object relationships such as specialization, collaboration and composition [17].  
 
CSBD allows systems to be developed from a number of existing software components with 
exposed interfaces and hidden implementations. Thus, a system can be developed by selecting, 
reconfiguring and assembling encapsulated, reusable, interoperable, pre-testing software 
components [1]. The major benefits of component-based software development include shortened 
development cycles, increasing productivity, and higher quality systems [7].  
 
Currently there are three major component technologies used in the development of component-
based applications. They are CORBA specification developed by the Object Management Group 
(OMG), DCOM developed by Microsoft Corporation and Java RMI developed by Sun 
Microsystem Inc. These component technologies have been widely adopted by the GIS 
community. For example, OpenGIS Consortium (OGC) issued the Simple Feature (SF) [13] and 
Grid/Coverage (GC) [12] geospatial data implementation specifications for CORBA and DCOM, 
which can be used as the standard geospatial data representations in CORBA, DCOM, or Java 
RMI environments. Environmental Systems Research Institute’s (ESRI) ArcGIS 8.3 and higher 
were developed for the DCOM environment [4]. 

 
2.2 Introduction to CORBA 
 
CORBA is a well-accepted, mainstream component technology. It targets the problems associated 
with heterogeneity in distributed computing environments. Such heterogeneity is common 
because platform-dependent computing technology changes over time, e.g., the operating systems 
and the network technology. CORBA, as a platform-independent computing model and 
abstraction, can not only hide the heterogeneity between different platforms, but also hide the 
complexity in the low-level network communication. It provides a standardized interface model 
and object framework for solving network computing problems in a distributed heterogeneous 
environment.  
 
The CORBA architecture consists of four main parts: Object Request Broker (ORB), Common 
Object Services, Common Facilities, and Application Objects. Essential to CORBA’s architecture 
is the ORB. The ORB is responsible for distributing object calls between clients and servers. The 
object calls can be either static or dynamic. Figure 1 illustrates the role of the ORB. The protocol 
for client/server interaction is defined through a single implementation language-independent 
specification, Interface Definition Language (IDL). The purpose of the IDL is to allow the 
definition of the object interfaces to be independent of any particular programming languages and 
provide operating-system-independent interfaces to the services and components which reside on 
a CORBA bus.  
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Figure 1: The structure of object request interfaces [14].  

 
Many of today’s GIS applications in distributed environments consist of components from 
different knowledge-domains which are both technically and semantically heterogeneous. Such 
heterogeneity can be overcome by using CORBA. 
 

3. Architecture and Methods 
 
We propose a layered architecture and methods with which a component-based distributed GIS 
can be built using a traditional GIS such as GRASS. The transformation of GRASS from a 
traditional GIS into a component-based distributed GIS is based on the proposed layered 
architecture which is introduced in Section 3.1, and achieved by encapsulating the GRASS 
commands in a shared C library called GRASSLib which is described in Section 3.2. Section 3.3 
describes elements of the component-based GIS. Some implementation related issues are 
presented in Section 3.4. 
 
3.1 Architecture 
 
Figure 2 represents the general layered architecture of a component-based GIS. Each layer in this 
architecture is independent of its underlying layer given that the interface of the underlying layer 
does not change. For example, following the design rules of layered architecture [18], objects in 
the layer hosting a component-based GIS Server access the Traditional GIS Kernel layer 
exclusively via the GIS Library layer. Therefore changes to the Traditional GIS Kernel will not 
require an adaptation of the classes or tools built within the component-based GIS Server layer.  
 

 
Figure 2: General architecture. 
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A Traditional GIS Kernel layer provides basic spatial data management and processing functions; 
however it cannot be readily used in a distributed environment. For example, GRASS is a 
command-oriented GIS which cannot directly accommodate distributed computing environments. 
The GIS Library layer provides sophisticated geo-processing services based on the underlying 
Traditional GIS Kernel layer. The GIS Library essentially wraps the traditional GIS commands or 
tools as a library with open APIs. This approach makes a traditional command-oriented GIS 
available in a distributed environment. A Component-based GIS Server is built on top of the GIS 
Library. This server provides domain-related geo-processing and mapping services to the layer 
built on top of it. Through this server, the complexity of the traditional GIS is hidden. Different 
GIS can be integrated in the system. For example either ESRI ArcGIS or GRASS can be used as 
the Traditional GIS Kernel. This server can be implemented as several separate components to 
gain flexibility and efficiency. GIS Applications are built on top of the Component-based GIS 
Server. Each application can be implemented as a set of separate components. And those parts of 
the application related to spatial data management and processing are implemented by the 
Component-based GIS Server. Therefore GIS applications are independent of the underlying 
traditional GIS.  
 
Figure 3 presents an instance of the general layered architecture, which transforms GRASS from 
a traditional GIS into a component-based GIS. In Figure 3, GRASS serves as the base of the 
layered architecture by providing the basic spatial data management and spatial analysis functions. 
The GRASS GIS Library is the primary C programming library provided by GRASS. It is the 
kernel of GRASS. GRASSLib is a shared C library developed by wrapping GRASS commands or 
related tools with open APIs. More details of GRASSLib are described in Section 3.2. The 
Component-based GRASS GIS Server is built by utilizing CORBA technology and GRASSLib. 
Each component of the server provides GIS Applications with specific geo-processing and 
mapping services which are accomplished using GRASSLib. Through the transformation, the 
component-based GRASS GIS Server can accommodate distributed computing environments. 
Moreover, the components in the server can be integrated in different applications. 
 

 
Figure 3: The architecture of component-based GRASS. 

 
3.2 GRASSLib 
 
GRASSLib plays a crucial role in transforming GRASS from a traditional GIS into a component-
based GIS. It is developed by wrapping core functions and related tools of GRASS into a shared 
library, which can be linked into components. It converts GRASS, a traditional GIS, from its 
original command-oriented style into an executable component. Therefore GRASS can be 
integrated into component-based applications. Thus the core spatial data management and 
processing functions of GRASS can be provided to other components through an object-oriented 
method in a distributed environment such as CORBA, DCOM, and JAVA RMI. 
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Each command of GRASS was implemented by several C programs calling the functions 
provided by GRASS GIS Libraries. To change a GRASS command into a function of GRASSLib, 
several important modifications have been made to the original programs supporting the 
command. The key modifications include: 

� The main() subroutines are changed to ordinary functions that take all the command 
line parameters of the GRASS command as parameters passed in by a client. An 
integer will be returned by the function to indicate whether the execution is successful. 
Figure 4 shows the declaration of the function converted from GRASS command 
s.surf.rst.  

 
 

 
 
 
 

 
Figure 4: Declaration of a function in GRASSLib. 

 
� Eliminate the use of global variables and static variables. Some of these variables have 

been changed into parameters passed to related functions. The others will be reset to 
initial values at the end of each execution. 

� Free memory occupied by the programs at the end of each execution to reduce memory 
leaks. Figure 5 shows an example of memory de-allocation and resetting of the global 
variables in Spline interpolation function. Memory management is important to 
transform GRASS commands into shared library. From our experience, it is time-
consuming to detect and eliminate the potential memory leak in the GRASSLib.  

 
 
 

DLL_EXPORT int spline_i(char* arg_input, char* arg_maskmap, char* arg_elev, char* 
arg_devi, char* arg_slope, char* arg_aspect, char* arg_pcurv, char* arg_tcurv, char* 
arg_mcurv, char* arg_treefile, char* arg_overfile, int arg_deriv,  int arg_dtens, double 
arg_dmin, double arg_fi, int arg_KMAX, int arg_npmin, double arg_zmult, int arg_elattr, 
double arg_theta, double arg_scalex, double arg_rsm, int arg_smattr, int mapoption ); 
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Figure 5: Example code of memory de-allocation. 
 

Currently there are seventeen GRASS commands from spatial interpolation to geospatial output 
that can be called directly from the GRASSLib. The API of the GRASSLib can be found on the 
project website [11]. More commands can be added to GRASSLib and be exposed to other 
components. 

 
3.3 Components of the Component-based GRASS GIS Server 
 
The Component-based GRASS GIS Server is built on top of GRASSLib. It provides geo-
processing and mapping services to the layer built on top of it. Through this server, the 
complexity of the traditional GIS is transparent to GIS applications. As illustrated in Figure 6, 
currently the component-based GRASS GIS server is comprised of three components. The 
SpatialSupportObject provides some basic spatial operations such as interpolation, 
reclassification, and spatial data conversion. The SpatialDataObject is responsible for listing 
available spatial data and metadata of the spatial data in the datasets and retrieving spatial data 
from the dataset. The SpatialInfoObject supplies clients with mapping tools. These tools can be 
used to transform spatial data into a pdf, png or gif file. 
 

#define CLEAN_BEFORE_RET \ 
{\ 
    if (az) G_free_vector(az); az = NULL; \ 
    if (adx) G_free_vector(adx); adx = NULL; \ 
    if (ady) G_free_vector(ady); ady = NULL; \ 
    if (adxx) G_free_vector(adxx); adxx = NULL; \ 
    if (adyy) G_free_vector(adyy); adyy = NULL; \ 
    if (adxy) G_free_vector(adxy); adxy = NULL; \ 
    if (functions) free(functions); functions = NULL;   \ 
    if (info->root->data->points){ free(info->root->data->points); printf("free data->points\n"); };   \ 
    if (info->root->data) { free(info->root->data); info->root->data = NULL; printf("free data \n");};  \ 
    if (info->root) free(info->root); info->root = NULL;        \ 
    if (info) free(info); info = NULL;                                  \ 
    if (zero_array_cell) free(zero_array_cell); zero_array_cell = NULL; \ 
    if (bitmask) BM_destroy(bitmask);  bitmask = NULL; \ 
    if (fddevi) fclose(fddevi); fddevi = NULL;          \ 
    if (elev) fclose(Tmp_fd_z); Tmp_fd_z = NULL;    \ 
    if (slope) fclose(Tmp_fd_dx); Tmp_fd_dx = NULL;  \ 
    if (aspect) fclose(Tmp_fd_dy); Tmp_fd_dy = NULL;  \ 
    if (pcurv) fclose(Tmp_fd_xx); Tmp_fd_xx = NULL;    \ 
    if (tcurv) fclose(Tmp_fd_yy); Tmp_fd_yy = NULL;     \ 
    if (mcurv) fclose(Tmp_fd_xy); Tmp_fd_xy = NULL;      \ 
    if (Tmp_file_z) free(Tmp_file_z); Tmp_file_z = NULL;      \ 
    if (Tmp_file_dx) free(Tmp_file_dx); Tmp_file_dx = NULL;      \ 
    if (Tmp_file_dy) free(Tmp_file_dy); Tmp_file_dy = NULL;      \ 
    if (Tmp_file_xx) free(Tmp_file_xx); Tmp_file_xx = NULL;      \ 
    if (Tmp_file_yy) free(Tmp_file_yy); Tmp_file_yy = NULL;      \ 
    if (Tmp_file_xy) free(Tmp_file_xy); Tmp_file_xy = NULL;      \ 
}\ 
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Figure 6: Components of GRASS GIS Servers. 

 
These components are implemented as CORBA objects. The interface of each component is 

defined using IDL. Figure 7 presents the IDL definition of the SpatialDataObject while Figure 8 
gives its C++ class definition in OmniORB environment. Through IDL, the interface of each 
component is exposed to the client application that requests the services while the implementation 
of the component is hidden. This is one of the benefits provided by component technologies.  
 

 
 

Figure 7: IDL Interface of SpatialDataObject. 
 

 

interface SpatialDataObject { 
                BinaryLayer getSite(in BaseMap area, in string siteName, in DataFormat 
destination) raises (SpatialOperationException, InvalidParameterException, 
MapFormatNotAvailableException); 
                BinaryLayer getVector(in BaseMap area, in OverlayType type, in 
MapResolution resolution, in DataFormat destination) raises (SpatialOperationException, 
InvalidParameterException, MapFormatNotAvailableException); 
                BinaryLayer getRaster(in BaseMap area, in OverlayType type, in MapResolution 
resolution, in DataFormat destination) raises (SpatialOperationException, 
InvalidParameterException, MapFormatNotAvailableException); 
             LayerHeaderSeq listSite(in BaseMap area) raises (SpatialOperationException, 
InvalidParameterException); 
                LayerHeaderSeq listVector(in BaseMap area) raises (SpatialOperationException, 
InvalidParameterException); 
                LayerHeaderSeq listRaster(in BaseMap area) raises (SpatialOperationException, 
InvalidParameterException); 
        }; 
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Figure 8: Class definition of SpatialDataObject. 
 

3.4 Implementation Issues 
 
GRASS is a complex system. Only wrapping the GRASS commands into a shared library is not 
enough to apply them to a component environment. This section introduces the related 
technologies used to transform GRASS into a component-based GIS server. Section 3.4.1 
presents the management of GRASS mapsets in component environment. Section 3.4.2 covers the 
mechanism used in projection transformation. The data formats supported by the component-
based GIS server are described in Section 3.4.3. Section 3.4.4 explains the synchronization issue. 
The component communication mechanism is presented in Section 3.4.5. 
 
3.4.1 Management of Mapsets 
 
All the GRASS programs and tools must be executed in a mapset. Settings of a mapset such as 
projection, region, and mask will affect the result of the execution. When a service provided by 
the Component-based GRASS GIS Server is requested, a thread is spawned by the server to 
handle the request. The thread needs a mapset and that thread will use the mapset exclusively. 
Our approach to assign and release mapsets is based to the approach used in GRASSLINKS [8]. 
 
Besides the PERMANENT mapset, a number of mapsets are created in each LOCATION. These 
mapsets serve as working mapsets for any thread spawned by the Component-based GRASS GIS 
Server. We use a lock mechanism to prevent a mapset from being used by more than one thread 
at the same time. An empty file called UNLOCK is generated while a mapset is created. Right 
before the calling of a function of GRASSLib in the thread, the server will check the mapsets in 

class SpatialDataObject_i: public POA_SpatialLayer::SpatialDataObject, 
public PortableServer::RefCountServantBase { 

        private: 
                PortableServer::POA* mypoa; 
                char config_file[512]; 
                omni_mutex grass_mutex; 
        public: 
                SpatialDataObject_i(const char* configfile, PortableServer::POA *p); 
                virtual ~SpatialDataObject_i(); 
                BinaryLayer* getSite(const BaseMap& area, const char* siteName, const DataFormat& 
destination) throw  (SpatialOperationException, InvalidParameterException,  
MapFormatNotAvailableException); 
                BinaryLayer* getVector(const BaseMap& area, OverlayType type, const MapResolution& 
resolution, const DataFormat& destination) throw  (SpatialOperationException, 
InvalidParameterException, MapFormatNotAvailableException); 
                BinaryLayer* getRaster(const BaseMap& area, OverlayType type, const MapResolution& 
resolution, const DataFormat& destination) throw  (SpatialOperationException, 
InvalidParameterException, MapFormatNotAvailableException); 
                LayerHeaderSeq* listSite(const BaseMap& area)  

throw (SpatialOperationException, InvalidParameterException); 
                LayerHeaderSeq* listVector(const BaseMap& area)  

throw (SpatialOperationException, InvalidParameterException); 
                LayerHeaderSeq* listRaster(const BaseMap& area)  

throw (SpatialOperationException, InvalidParameterException); 
                void destroy(); 
}; 
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the current LOCATION cyclically. The first mapset found with a UNLOCK file will be assigned 
to the thread and becomes the current working mapset for the thread. Once a mapset is assigned 
to a thread, file UNLOCK will be renamed to LOCK to indicate that the mapset is in use. Before 
renaming UNLOCK to LOCK, the server will check if a file called LOCK already exists. If file 
LOCK exists, that means the mapset is in use. The server will continue checking other mapsets. 
After the execution of the thread, that file will be renamed to UNLOCK again. Then that mapset 
can be available to any other thread.  
 
Once a mapset is assigned to a thread, the attributes of the mapset such as region and mask will 
be set up according to parameters passed to the function by the client. The settings will impact the 
results of the invoked method. 

 
3.4.2 Location Management and Projection transformation 
 
Projection transformation is an important and necessary functionality of a GIS. The Component-
based GRASS GIS Server also supports this functionality. The server uses two approaches to 
conduct projection transformation. These two approaches are an explicit method and an implicit 
method. The explicit method transforms the coordinates from a given projection to a required 
projection by directly processing the coordinates based on the API provided by the GRASS GIS 
library. The explicit method is applied to the client input parameters that required projection 
transformation. These parameters usually only contain a few pairs of coordinates. 
 
The implicit method performs projection transformation using the setting of GRASS LOCATION. 
The LOCATION is one part of the hierarchy of the GRASS database structure. The 
LOCATION is actually a directory in a UNIX file system. And mapsets are sub-
directories of a certain LOCATION in a UNIX file system. In GRASS each LOCATION 
has a certain projection setting. All the mapsets that belong to the same LOCATION share the 
same projection setting. The implicit method conducts the transformation by setting a mapset 
belonging to a LOCATION with required projection as the current working mapset. Before the 
server assigns an available mapset to a thread, the server first determines which LOCATION to 
choose as the current LOCATION. Then the server will assign an available mapset of that chosen 
LOCATION to the requested thread.  
 
The implicit approach is applied to the output of the server, which may be a raster or a vector. 
This approach has no computing overhead compared to the explicit approach. Therefore the 
Component-based GRASS GIS Server can gain performance. However, performance comes at a 
price of disk space and possibility of data inconsistencies. The server creates one LOCATION for 
each projection that it supports. And a copy of the base maps in the defined projection will be 
stored in each LOCATION. 
 
3.4.3 Data Formats 
 
The Component-based GRASS GIS Server adopts the GRASS spatial data model and uses the 
GRASS data format as its native format. However, to prevent the Component-based GRASS GIS 
Server from being closed and monolithic, the input and output spatial data the server uses the 
standard ASCII-based vector and raster formats that are supported in many GIS software. The 
Component-based GRASS GIS Server also provides functions to perform data conversion 
between the GRASS data format and other formats such as ESRI shape files, Acrobat pdf, jpeg 
and gif files. Since pdf, jpeg and gif files can be viewed through ordinary web browsers, the 
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Component-based GRASS GIS Server can be used in a web GIS application which is developed 
and deployed in a distributed environment such as CORBA, DCOM, and JAVA RMI. 
 
3.4.4 Synchronisation 
 
GRASS is a traditional command-oriented style GIS. There are some shared resources used in 
GRASS such as environment variables and the .grassrc5 file. Thus we have to provide a method 
for protecting the shared resources used in GRASS when we transform GRASS into a 
component-based GIS that support multithreads. We use class omni_mutex to solve this problem. 
A variable of type omni_mutex is defined in the implementation of each component (shown in 
Figure 8). A class omni_mutex provides two operations, lock() and unlock(). Wherever a 
GRASSLib function is called, the function is placed between a pair of lock() and unlock() calls. 
Hence the shared resources are protected in a consistent manner throughout the system. 
 
3.4.5 Communication Mechanism 
 
The inter-object and intra-object communication mechanism is provided by a CORBA ORB. The 
ORB itself is an object. When a client object requests a method on a server object, it goes to the 
ORB. The ORB then invokes the method on behalf of the client. The ORB takes care of all the 
tedious tasks of locating the server object, establishing a connection, invoking the method, getting 
the result, and closing the communication session. The CORBA Naming Service is used to locate 
objects by name.  
 

4. An Example: National Agriculture Decision Support System 
 
The National Agricultural Decision Support System (NADSS) is a web-based Spatial Decision 
Support System (SDSS) [5]. It provides geospatial related data in the form of climate data (e.g., 
temperature and precipitation) for agricultural models, information in the form of drought indices, 
and knowledge in the form of exposure analysis (e.g., the impact of a natural hazard). NADSS 
consists of spatial analytical models to use climatic data to generate drought maps based on 
indices such as the Standard Precipitation Index (SPI) [10] and the Palmer Drought Severity 
Index (PDSI) [15].  
 
4.1 Architecture 
 
Figure 9 shows the architecture of NADSS, which is built on top of the Component-based 
GRASS GIS Server. NADSS is comprised of a set of independent components that can be 
deployed on several computers. NADSS utilizes CORBA for GIS infrastructure and Enterprise 
Java Beans (EJB) for application distribution [3]. Therefore NADSS can accommodate a 
heterogeneous distributed computing environment. By assembling the Component-based GRASS 
GIS Server in the system, the complexity of traditional GRASS is transparent to application 
components and interface components.  



Xueming Wu, Shifeng Zhang, Steve Goddard 11 

 
Figure 9: Architecture of NADSS. 

 
Figure 10 demonstrates the generation a PDSI map of a selected area in Nebraska in NADSS. In 
Step 1, the client sent a request to the PDSI Server through the ORB. The PDSI Server calculated 
the PDSI for the selected area and returned the PDSI information to the client via the ORB. Then 
in Step 2, the client passed the PDSI information and a request for a map to the Component-based 
GRASS GIS Server via the ORB. The Component-based GRASS GIS Server conducted an 
interpolation using the PDSI information, generated a PDSI map, and converted the map to the 
required format such as pdf, png or gif. Then the server returned the generated map to the client 
through the ORB.   
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Figure 10: Generation of a PDSI map. 
 

4.2 Performance Evaluation 
 
To transform a traditional GIS in a distributed environment can extend the usage of the traditional 
GIS. However, the transformation may impact the performance of the system. We evaluate the 
performance of our implementation and present the results. 
 
To evaluate the performance of the component-based GRASS GIS server implemented in 
NADSS, we compared interpolation functions from the server and a C program which called the 
interpolation command of GRASS (s.surf.rst was used in the evaluation) through a system call. 
These two interpolations used the same input data, same interpolation method and parameters. 
The component-based GRASS GIS server first retrieved input data, then called the interpolation 
function of GRASSLib, and called the raster conversion function of GRASSLib to convert the 
interpolation result into ASCII-raster format. Finally the ASCII raster was sent to the client using 
the CORBA IIOP protocol. The C program first called the interpolation command of GRASS, 
which read the input data from a GRASS site file, then called the raster conversion command of 
GRASS (r.in.ascii was used) to convert the interpolation result into ASCII format.  
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This evaluation was designed to estimate the computation overhead caused by wrapping the 
GRASS commands with component technology. However, there exists communication overhead 
between the client and the component-based GRASS GIS server. To minimize the impact of 
transferring raster data from the component-based GRASS GIS server to client, the server and the 
client were deployed on the same computer in the evaluation.  
 
We tested the average processing time in seconds for four different spatial resolutions (3000m 
[low resolution], 1000m, 500m, 200m [high resolution]). The different resolutions affect the 
interpolation result size and consequently the raster data size (the greater the resolution, the larger 
the raster data size).  
 
Table 1 presents the average call times and standard error of call times from the test samples of 
the server and the C program at each resolution. The average call times are plotted in Figure 11 to 
provide a visual comparison of their performance. From the results, we found that the component-
base GRASS GIS server was a little slower than the C program, which called GRASS commands 
directly.  The performance impact comes from the communication overhead of the CORBA 
components. Nevertheless, the performance impact is acceptable and the component-based 
GRASS GIS server can accommodate distributed computing environments. 
 

Component-based GRASS  
GIS server  

C program 
(GRASS command)  

 

mean standard error mean standard error 
3000x3000m 0.885201 0.019641 0.855673 0.002863 
1000x1000m 6.920380 0.117729 6.464280 0.047110 
500x500m 27.098860 0.189585 25.248723 0.090016 
200x200m 167.303000 0.665325 158.480230 2.793640 

 
Table 1: The mean call time in seconds and the standard error of call times 
from the test samples for the Component-based GRASS GIS server and GRASS 
commands. 
 

             

0

20

40

60

80

100

120

140

160

180

Component-based
GRASS server

C program (GRASS
command)

3000x3000m

1000x1000m

500x500m

200x200m

 
Figure 11: Performance evaluation. 
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5. Conclusion 
 
An approach to transform GRASS, a traditional GIS, into a component-based GIS server has been 
presented and an example of integrating the component-based GIS server in a SDSS is given. We 
showed that this approach is useful and practical by applying component technology to a 
traditional GIS to achieve accommodation of distributed computing environments.  
 
First, we introduced a layered architecture that uses component technology to construct a 
component-based GIS server from a traditional command-oriented GIS such as GRASS. A layer 
in the layered architecture is independent of its underlying layer, given that the interface of the 
underlying layer does not change. 
 
Second, we presented our work on GRASSLib, which wraps core functions and tools of GRASS 
with component technology into a shared library. It converts GRASS from its original command-
oriented style into an executable component which can be linked to other components through an 
object-oriented method in a distributed environment. 
 
Third, we described the implementation of a component-based GRASS GIS server built on top of 
GRASSLib. Each component of the server is a CORBA object that provides specific 
geoprocessing and mapping service to GIS application components. Some methods related to the 
management of GRASS mapsets and locations were also covered in this paper. 
 
We used NADSS, a SDSS, as a case study to demonstrate the application of the component-based 
GRASS GIS server. We also presented a performance evaluation of the example server.  
 
Traditional GIS software, like GRASS, are command-oriented, and normally unsuitable for use in 
a component-based distributed computing environment. This limitation has prevented their broad 
usage in today’s distributed GIS applications. The transformation approach can be applied to 
similar traditional GIS whose core functions and tools can be wrapped using shared libraries.  
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